How will immunotherapy reshape the treatment of multiple myeloma? March, Torino

Niels van de Donk

Department of Hematology, Amsterdam University Medical Center, Amsterdam, The Netherlands

Cancer Center Amsterdam

Disclosures

- Advisory boards for Janssen Pharmaceuticals, Amgen, Celgene, Bristol-Myers Squibb, Novartis, Roche, Takeda, GSK, Sanofi, Bayer and Servier
- Research funding from Janssen Pharmaceutical, Amgen, Celgene, Novartis, Cellectis, and Bristol-Myers Squibb

Myeloma therapy: what's available ?

CD38 mAbs

-daratumumab -isatuximab

New-generation immunotherapies in MM (T-cell redirecting therapies: >60% response rates in heavily pretreated MM)

BCMA, B-cell maturation antigen; CAR, chimeric antigen receptor; cilta-cel, ciltacabtagene autoleucel; FcRH5, Fc receptor-like 5; GPRC5D, ide-cel, idecabtagene vicleucel;

GPRC5D, G-protein coupled receptor family C group 5 member D; Ig, immunoglobulin; scFv, single chain variable fragment.

1. Rodríguez-Lobato LG, et al. Front Oncol. 2020;10:1243. 2. Pillarisetti K, et al. Blood Adv. 2020;4:4538-49. 3. Yu B, et al. J Hematol Oncol. 2020;13:125. 4. Verkleij et al. Blood Advances, 2020;5(8);2195-2215. 5. Smith EL, et al. Sci Transl Med. 2020;11:eaau7746. 6. Li J, et al. Cancer Cell. 2017;31;383-395. 7. Bruins WSC, et al. Front Immunol. 2020;11:1155.

Images adapted from Verkleij CPM, et al. Curr Opin Oncol. 2020;32:664-71 and Bruins WSC, et al. Front Immunol. 2020;11:1155.

TECLISTAMAB (MajesTEC-1): EMA approved (24 august 2022); FDA approved

https://www.jnj.com/janssen-marks-first-approval-worldwide-for-tecvayli-teclistamab-with-ec-authorisation-of-first-in-class-bispecificantibody-for-the-treatment-of-patients-with-multiple-myeloma (accessed October 2022)

CR, complete response; PR, partial response; sCR, stringent CR; VGPR, very good PR

Nooka A et al. ASCO 2022; abstract 8007 (oral presentation); Moreau P et al. N Eng J Med 2022; 387(6): 495-05.

Elranatamab (MagnetisMM 3)

Median prior regimens: 5 Median follow-up: 10.4 months

BICR, blinded independent central review; CR, complete response; PR, partial response; sCR, stringent complete response; VGPR, very good partial response

Bahlis N et al. ASH 2022; abstract 159 (oral presentation)

20

0

Ide-cel (KarMMa): FDA/EMA approved

Median prior regimens: 6 Median follow-up: 13.3 months

https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-idecabtagene-vicleucel-multiplemyeloma (Accessed Oct 2022); https://www.ema.europa.eu/en/medicines/human/EPAR/abecma (accessed Oct 2022); Munshi N et al N Eng J Med 2021; 384(8):705-716; Munshi ASCO 2020; abstract 8503 (oral presentation).

KarMMa

Cilta-cel (CARTITUDE-1): FDA/EMA approved

^aORR assessed by independent review committee. ^bNo patient had CR or stable disease

Median prior regimens: 6 Median follow-up: 28 months

^a27-month PFS rate.

CR, complete response; MRD, minimal residual disease; NE, not estimable; ORR, overall response rate; PFS, progression-free survival; PR, partial response; sCR, stringent complete response; VGPR, very good partial response https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approvesciltacabtagene-autoleucel-relapsed-or-refractory-multiple-myeloma (accessed oct 2022); https://www.ema.europa.eu/en/medicines/human/EPAR/carvykti (accessed Oct 2022); Usmani S et al. ASCO 2022;abstract 8028 (poster presentation).

Myeloma therapy: what's (soon...) available ?

CD38 mAbs -daratumumab

-isatuximab

CAR T -ide-cel -cilta-cel

How we currently treat MM

van de Donk N, personal opinion.

How can we improve survival of MM patients?

- 1. Earlier use of T-cell redirecting therapies
- 2. Combination strategies
- 3. Synergistic sequence of agents
- 4. Next generation of immunotherapies

1. Earlier use of best drugs

• Approval of T-cell redirecting therapies in advanced myeloma

Rationale of earlier use

• Use of best drugs early in treatment course

- Only two thirds of patients receive more than 1 line of therapy (more common in elderly patients
- Deepest remission \rightarrow To preserve quality of life
 - (QoL diminishes with each progression because of cumulative burden of therapy and disease-related complications)
- Superior T-cell fitness in earlier lines of therapy vs advanced disease

• PROOF OF CONCEPTS → KARMMA-3 /CARTITUDE-4 / MAJESTEC-4 etc

Lenalidomide and CD38 antibodies increasingly used as part of first-line therapy

- Increasing fraction of patients will have lenalidomide-refractory disease and prior bortezomib exposure at the time of first progression
- Subset of these patients will also have daratumumab-refractory disease at the time of first progression

- June 2019 Multiple myeloma with extensive bone disease and anemia
- Hyperdiploidy (standard-risk)
- R-ISS stage 2
- TREATMENT: VTD→ HDM+auto-SCT→ complete response
- Feb 2020 start lenalidomide maintenance

Case 1

- June 2019 Multiple myeloma with extensive bone disease and anemia
- Hyperdiploidy (standard-risk)
- R-ISS stage 2
- TREATMENT: VTD→ HDM+auto-SCT (nov 2019)→ VGPR (M-pro NTQ)
- Feb 2020 start lenalidomide maintenance
- May 2020 biochemical progression with rapid increase in M-protein

What now !

- Prognosis ?
- Treatment ?

A new prognostic model for patients relapsing from upfront ASCT : independent effect of PFS1 (UCLH data)

Post-relapse survival

OS

of relapse ISS 1 >12 months Either <12 months ISS 1 Or >12 months ISS 2 or 3 <12 months ISS 2 or 3

ISS stage

Early relapse (<12m) was associated with shorter PRS (18 vs 49 months, p<0.001) and OS (27 vs 85 months

What now? Prognosis

Study	Number of patients	Definition early relapse	% early relapse	Post-relapse survival (months)	OS from diagnosis (months)
UCL 2019 ¹	269	<12 months after HDM	27%	18 vs 49	27 vs 85
DK 2018 ²	575	<12 months after HDM	17.9%	NA	26.1 vs 95.3
Ong 2016 ³	215	<12 months after HDM	18%	11 vs NA	16 vs 122
Mayo 2016 ⁴	561	<12 months after HDM	5.8%	NA	23.1 vs 122.2
Mayo 2008 ⁵	494	<12 months after HDM	24%	10.8 vs 41.8	20.1 vs 82.5
Jimenez-Zepeda ⁶	184	<12 months after HDM	15%	NA	20 vs 93
NA, not assessed					

1. Chavda S et al. B J Haematol 2019;185(2):350-3; 2. Helm-Petersen S et al. Leukemia 2018;32(9):2054-7; 3. Ong SY et al. Bone Marrow Transplant 2016; 51(7):933-7; 4. Majithia N et al. Leukemia 2016;30(11):2208-13; 5. Kumar S et al. Bone Marrow Transplant 2008;42(6):413-20; 6. Jimenez-Zepeda VH et al. Bone Marrow Transplant 2015;50(2):204-8.

Early relapse represents an unmet medical need

- New treatment strategies needed !
- Incorporation of new novel agents with novel mechanisms of action to achieve MRD-negative disease
 - T-cell redirecting therapies promising
 - BCMA-targeting CAR T-cell therapy (ide-cel, JNJ-4528)
 - T-cell redirecting bispecific antibodies directed against BCMA or GPRC5D
- Strategies to sustain MRD-negative disease

CARTITUDE-2 study design

CASE 1

- Vd bridging
- Flu/cy conditioning
- 15 sept 2020 CAR T cell infusion
 - Grade 1 CRS
 - Infections (still receiving IVIG)

- Response: stringent Complete Remission which persists until now (2.5 years after CAR T-cell infusion
- 1 shot therapy vs continuous use of drugs and expected rapid development of multi-drug resistance (short remission durations)
- Good and preserved quality of life

CARTITUDE-2: Response and safety Cohort B - relapse within 12 months after ASCT or start of therapy

- Median follow-up: 18 months
- Median time to first response: 0.95 months
- Median duration of response: not reached
- 18 month PFS rate: 83%
- 18 months OS rate: 83% •

0

14/15 patients were evaluable and were MRD negative (10⁻⁵, NGS)

3 deaths occurred due to PD

2/3 had MM with high-risk • cytogenetic characteristics; none had EMD

ASCT, autologous stem cell transplant; CAR, chimeric antigen receptor; CR, complete response; CRS, cytokine release syndrome; EMD, extramedullary disease; ICANS, immune effector cell-associated neurotoxicity syndrome; MNT, movement neurocognitive syndrome; MRD, minimal residual disease; NGS, next-generation sequencing; ORR, overall response rate; PD, progressive disease; sCR, stringent complete response; VGPR, very good partial response

2. Combination therapy

• T-cell redirecting therapies approved as monotherapies

- Combination therapy to prevent outgrowth of resistant clone
- → agents with synergistic MoA (components target different biological mechanisms)
- \rightarrow agents with different mechanisms of resistance
- → agents with non-overlapping toxicity profiles

Non-responders to teclistamab have an unfavorable immune profile

Cortes-Selva D et al. ASH 2022; abstract 97 (oral presentation)

Mechanisms of resistance

Tumor-related features

- BCMA expression
- Antigen loss or diminished antigen expression
- Soluble BCMA
- Tumor load

- High-risk cytogenetic features
- Extramedullary disease
- Inhibitory receptors and ligands, which suppress T-cell function

BCMA, B-cell maturation antigen; BM, bone marrow; BsAb, bispecific antibody; IMiD, immunomodulatory drug; MMC, multiple myeloma cell; Tregs, regulatory T-cells

MajesTEC-2: Design and baseline characteristics

MajesTEC-2 design			Baseline characteristics		
Key eligibility criteria	Q Primary endpoints	Key secondary endpoints	Characteristic	Dara 1800 mg SC Len 25 mg PO	
 Measurable MM 1–3 prior lines of therapy, including an IMiD and a PI 	 Safety^a Dose-limiting toxicities 	 ORR⁶ Rate of ≥VGPR and ≥CR⁶ Duration of response Time to response 		Tec 0.72 mg/kg SC (n=13)	Tec 1.5 mg/kg SC (n=19)
			Age (years), median (range)	65 (38-71)	60 (46-75)
Tec-Dara-Len Dosing Schedule:			High-risk cytogenetics, n (%)	3/12 (25.0)	7/15 (46.7)
Тес	Dara	Len	and del17p		
Following step-up dosing	1800 mg SC (per approved schedule)	25 mg PO daily for 21 days of a 28-day cycle, starting at cycle 2	Prior lines of therapy, median (range)	2 (1-3)	2 (1-3)
0.72 mg/kg or 1.5 mg/kg SC QW, with transition to 3 mg/kg SC Q2W starting at cycle 3	Cycles 1–2: QW Cycles 3–6: Q2W Cycles 7+: Q4W	Cycles 2–4: dexamethasone 40 mg PO given QW	Refractory to anti-CD38 mAb, n (%)	3 (23.1)	3 (15.8)
			Refractory to lenalidomide, n (%)	6 (46.2)	3 (15.8)

^aAEs assessed per CTCAE v5.0, except for CRS and ICANS, which were graded per ASTCT guidelines. ^bAssessed per IMWG 2016 criteria. ≥VGPR, very good partial response or better; ≥CR, CR or better;

AE, adverse event; ASTCT, American Society for Transplantation and Cellular Therapy; CR, complete response; CRS, cytokine release syndrome; CTCAE, Common Terminology Criteria for AEs; ICANS, immune effector cell-associated neurotoxicity syndrome; IMiD, immunomodulatory drug; IMWG, International Myeloma Working Group; MM, multiple myeloma; ORR, overall response rate; PI, proteasome inhibitor; PO, by mouth; Q2W, every 2 weeks; Q4W, every 4 weeks; QW, every week; SC, subcutaneous; tec-dara-len, teclistamab, daratumumab, and lenalidomide

MajesTEC-2: Response to tec-dara-len

- Median follow-up: 8.4 months
- 25/31 (80.6%) remain progression free

Responses deepened over time, and mDOR has not been reached

CR, complete response; mDOR, median duration of response; PD, progressive disease; PR, partial response; SC, subcutaneous; sCR, stringent complete response; tec-dara-len, teclistamab, daratumumab, lenalidomide; VGPR, very good partial response

MajesTEC-2: Safety profile

AF (any Grade: >25%	N=32		
and/or Grade 3/4: ≥10%), n (%)	Any Grade	Grade 3/4	
Neutropenia	27 (84.4)	25 (78.1)	
Thrombocytopenia	8 (25.0)	5 (15.6)	
Anemia	7 (21.9)	4 (12.5)	
Febrile neutropenia	4 (12.5)	4 (12.5)	
Lymphopenia	4 (12.5)	4 (12.5)	

Hematological AEs

Non-hematological AEs

AE (any Grade: >25%	N=32		
and/or Grade 3/4: ≥10%), n (%)	Any Grade	Grade 3/4	
CRS	26 (81.3)	0	
Fatigue	15 (46.9)	2 (6.3)	
Diarrhea	15 (46.9)	0	
Cough	13 (40.6)	1 (3.1)	
COVID-19	12 (37.5)	4 (12.5)	
Insomnia	12 (37.5)	1 (3.1)	
Hypophosphatemia	10 (31.3)	2 (6.3)	
Pyrexia	10 (31.3)	1 (3.1)	
Upper respiratory tract infection	10 (31.3)	0	
Nausea	10 (31.3)	0	
ALT increased	9 (28.1)	3 (9.4)	
Pneumonia	8 (25.0)	5 (15.6)	

No ICANS reported

•

- Grade 3/4 events occurred in 29 (90.6%) patients
 - Patients with ≥ 1 infection: any grade 29 (90.6%); grade 3/4 12 (37.5%)
- 2 fatal AEs (COVID-19 and multiorgan failure due to sepsis)
- CRS median onset and duration was 2 days and 97% (37/38) occurred during cycle 1

Impact on normal immune function : Infections

- BCMA BsAb: depletion of normal plasma cells + normal B-cells, and T-cell exhaustion
- DARA: depletion of normal plasma cells + NK cells
- IMiD/CELMoD: B-cell depletion

Infectious prophylaxis is crucial (my cocktail: cotrim/valacyclovir/IVIG)
 Studies needed to investigate fixed duration treatment or maintenance to allow for immune reconstitution

Novel CELMoD agent: IBER (preclinical data)

IBER has enhanced affinity for binding to CRBN

- Rapid protein degradation
- Increased depth of protein degradation
- At lower concentrations than needed with LEN or POM
 - \rightarrow Increased efficacy in preclinical studies

Binding-surface interactions with CRBN

In preclinical models, IBER is a novel CELMoD agent that:

- Co-opts CRBN to enable enhanced degradation of target proteins; 20 times higher affinity than LEN or POM
- Is 20-fold more efficient than LEN or POM in degrading substrates

IBER induces more potent immune stimulation than LEN/POM (preclinical data)

IBER induces cytokine secretion from PBMCs more potently than IMiD agents

Bort, bortezomib; Conc., concentration; IL-2, interleukin-2; len, lenalidomide; PBMC, peripheral blood mononuclear cell; pom, pomalidomide

Amatangelo M et al. ASH 2020; abstract 1359 (poster presentation).

Novel CELMoD[®] agent: Mezigdomide (CC-92480) (preclinical data)

Mezigdomide (CC-92480) is a novel CELMoD[®] agent, with a distinct chemical structure from LEN and POM, higher affinity for CRBN, and more efficient substrate degradation

CC-92480 is an investigational product, currently not approved by any regulatory agency. Y_{min} is the lowest point of the dose-response degradation curve and denotes the minimum percentage protein remaining

Potential for synergy: CELMoD and T-cell redirecting therapies

Figure 3. Pretreatment of target MM cells with MEZI for 72 hours led to enhanced cytotoxic activity of ALNUC

study na

3. Synergistic sequence of agents

• We are now using T-cell redirecting therapies in end-stage MM (prior line of therapy is highly heterogeneous)

• Can we improve?

 $\rightarrow A \rightarrow B > B \rightarrow A$

 \rightarrow Better understanding needed of best sequence of agents !

Understanding starting material and pre-infusion patient characteristics associated with clinical outcomes

Feature	Cluster 4	Chuston 2	Chuster 2	Cluster 4
reature	Cluster I	Cluster Z	Cluster 3	Cluster 4
Prior therapies	Recent alkylator, PI, TI t Prior regimens	Recent alkylator, PI, TI	Recent alkylator, PI	Distant alkylator, PI, TI
Tumor burden	† sBCMA/M-protein	† sBCMA/M-protein † LDH	↓ sBCMA/M-protein	‡ sBCMA/M-protein
Immune profile	↓ ALC † Mono:Leuk	† ALC † Mono:Leuk	↓ ALC ↓ Mono:Leuk	↑ ALC ↓ Mono:Leuk
Patient fitness	Albumin Creatinine clearance	1 Creatinine clearance	† Creatinine clearance	† Albumin ↓ Creatinine clearance
PBMC material	↓ CD3%	1 CD4:CD8	† CD4:CD8 High quality phenotype	1 CD3%
In-process	↓ Yield ↓ Early cell size	1 Yield	† Yield † Early cell size	† Yield
Drug product	1 CD3/CAR% 1 VCN	1 CD3/CAR%	† CD3/CAR%	† CD3/CAR% † VCN
Efficacy	mPFS: 3 mo CRR: 18%	mPFS: 7.9 mo CRR: 32%	mPFS: 11.7 mo CRR: 50%	mPFS: 14.5 mo CRR: 61%

Summary of patient and manufacturing features in each cluster colorized by their modeled effect on manufacturing and clinical outcomes. ALC, absolute lymphocyte count; BCMA, B-cell maturation antigen; CAR, chimeric antigen receptor; CD, cluster of differentiation; CRR, complete response rate; LDH, lactose dehydrogenase; leuk, leukocyte; mo, months; mono, monocytes; mPFS, median progression-free survival; M-protein, monoclonal protein; PBMC, peripheral blood mononuclear cells; PI, proteosome inhibitor; TI, topoisomerase inhibitor; VCN, vector copy number.

Low tumor burden, high ALC count, high cell yield, high CD3 count in the cell product, high % of CAR and distant alkylator therapy (ideally > 9 months) were associated with better outcomes after ide-cel

38

Least

Faunahla

Most

PFS outcomes by type of prior BCMA-TT

ADC, antibody-drug conjugate; BCMA, B-cell maturation antigen; CAR, chimeric antigen receptor; PFS, progression-free survival

4. Next generation immunotherapies

Novel BsAb formats to improve response

Include co-stimulation

- RO7443904
 - CD19xCD28 costimulatory bispecific antibody-like fusion protein
 - designed to deliver a safe CD28 agonist signal¹
 - activity strictly dependent on CD19 cross-linking
 - potential to augment activity of glofitamab in NHL^{1,2}
- Glofitamab
 - CD20xCD3 T-cell engaging bispecific antibody³
 - significant single-agent activity in R/R indolent and aggressive NHL⁴⁻⁶

Costimulation improves antitumor activity

- Anti-tumor activity evaluated in mouse model of DLBCL
- RO7443904 + glofitamab > glofitamab alone
- No RO7443904 single-agent activity

Tumor growth inhibition in a mouse model of DLBCL*

*humanized NSG mice (7~8 mice/group) were implanted with WSU-DLCL2-Fluc lymphoma cells and treated once-weekly with glofitamab (0.15mg/kg IV) or RO7443904 (1mg/kg IV) alone or in combination starting at Day 3. Tumor growth was recorded with BLI measurement. BLI, bioluminescence imaging; DLBCL, diffuse large B-cell lymphoma; IV, intravenous

Sam et al. ASH 2022. Poster 1360.

TsAbs: dual targeting

Novel CAR T formats to improve response

GPRC5D-targeting CAR-T cell therapy: Response

ORR

ORR in patients with and without experience of BCMA-targeting therapy

BCMA, B-cell maturation antigen; CAR, chimeric antigen receptor; CRR, clinical response rate; ORR, overall response rate; PR, partial response; sCR, stringent response rate; VGPR, very good response rate

Berdeja J et al. ASH 2022; abstract 364 (oral presentation)

Chimeric antigen receptors

Multi-targeting with CARs: OR Gates

- Restricted to tumor-specific antigens
- No clinical proof of overcoming antigen low relapses
- Multivalent binding leads to better antitumor effect
 - Mechanism? Binding requirements? Receptor design requirements?

A and B Tumor specific

Themeli Sci Trans Med 2021

The CAR+CCR strategy: the BETTER gate

- 1. Earlier use of T-cell redirecting therapies
- 2. Combination strategies
- 3. Synergistic sequence of agents
- 4. Next generation of immunotherapies

van de Donk N, personal opinion.

How we may treat MM in the future.....

van de Donk N, personal opinion.

EMN28 (EMAGINE; CARTITUDE-6)

Boccadoro ASH 2022

Study Design

Key eligibility criteria

- Newly Diagnosed MM
- Received 4-6 cycles of 3 or 4 drug-induction therapy that includes a PI and/or an IMiD with or without anti-CD38 antibody and a single or tandem ASCT

heads

MajesTEC-4 EMN30/64007957MMY3003

> **Primary** endpoint:

• PFS

Secondary endpoints:

- CR+ rate
- MRD negativity rate
- Sustained MRD negativity
- CR conversion
- MRD conversion
- OS
- PFS2

* E1910: Randomized Ph III Adult Frontline ALL

ALL

American Society of Hematology Helping hematologists conquer blood diseases worldwide

Overall Survival Comparison: MRD negative patients

Conclusions

- T-cell redirecting immunotherpies are improving survival of MM patients
 - EARLIER USE
 - COMBINATIONS
 - SEQUENCE OPTIMALIZATION
 - NEXT GEN